Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Волновая оптика Статистическая физика Электротехника Элементы кристаллографии Лабораторные работы Электрические цепи постоянного тока Магнитная индукция Контрольная работа

Основы электродинамики Индуктивность соленоида Механические волны ьЭлектромагнитные колебания Вынужденные электрические колебания Энергия и импульс электромагнитной волны Волновая теория света Тепловое излучение

Задачи по курсу общей физики и элекиротехнике

Энергия и импульс электромагнитной волны. Вектор Пойнтинга.

Распространение электромагнитной волны сопровождается переносом энергии и импульса электромагнитного поля. Чтобы убедиться в этом, умножим скалярно первое уравнение Максвелла в дифференциальной форме (см. Лекцию 15) на , а третье – также скалярно на , и вычтем полученные результаты один из другого. В результате будем иметь:

.

Используя формулу векторного анализа , а также принимая во внимание материальные уравнения  и , преобразуем написанное уравнение к виду: Параметрическое усиление колебаний в одноконтурной системе

или ,

где введены обозначения

;

.

Величина w – плотность энергии электромагнитного поля, переносимой волной: она слагается из плотности энергии электрического и магнитного полей. Вектор , имеющий смысл плотности потока энергии, носит название вектора Пойнтинга (Poynting J., 1852-1914).

Полученное уравнение выражает собой закон сохранения энергии для электромагнитного поля в дифференциальной форме. Оно показывает, что изменение энергии поля в выделенном объеме пространства за единицу времени происходит за счет потока вектора Пойнтинга через поверхность, охватывающую этот объем. Скорость переноса энергии называется групповой скоростью, она определяется как:

.

Отсюда следует размерность вектора Пойнтинга в СИ: .

Групповая и фазовая скорости волны связаны между собой соотношением де`Бройля (de Broglie L., 1892-1984):

  .

В вакууме u==c; в среде , поэтому в среде фазовая скорость электромагнитной волны  может превышать скорость света в вакууме.

 Наряду с энергией, электромагнитная волна переносит импульс поля. Плотность импульсаэлектромагнитного поля связана с вектором Пойнтинга соотношением:

.

Из факта существования у электромагнитной волны импульса следует, что при ее падении на некоторую поверхность она будет оказывать давление на эту поверхность. Величина давления определяется по формуле:

,

где r – коэффициент отражения; - среднее значение плотности энергии волны.

Упругие волны в твердых телах. Аналогия с электромагнитными волнами.

Законы распространения упругих волн в твердых телах вытекают из общих уравнений движения однородной упруго деформированной среды:

,

где ρ – плотность среды; ui – компоненты вектора упругого смещения; σik = ciklmεlm – тензор напряжений; - тензор деформации; ciklm – тензор упругих модулей.

Отсюда следует, что вектор упругого смещения удовлетворяет волновому уравнению вида:

.

Если искать решение этого уравнения в виде плоской монохроматической волны

,

то ему можно придать вид:

,

где  - тензор приведенных упругих модулей; - единичный вектор волновой нормали; c = ω/k – фазовая скорость упругой волны.

Полученное уравнение является основным для всей теории упругих волн в твердых телах, и носит название уравнения Кристоффеля. Из него, в частности, следует, что в анизотропных твердых телах (кристаллах) по любому направлению могут распространяться три упругие волны, которые в общем случае не являются ни чисто продольными, ни чисто поперечными. Фазовые скорости их также различны.

Изотропные твердые тела характеризуются только двумя упругими модулями – модулем Юнга E и модулем сдвига G. В таких телах две из трех упругих волн всегда являются чисто поперечными и имеют одинаковую фазовую скорость ct; третья волна является чисто продольной и имеет свою фазовую скорость cl > ct. В данном случае исходное волновое уравнение распадается на два независимых волновых уравнения для двух поперечных волн  и одной продольной волны :

 ,

где - фазовая скорость поперечной волны; - фазовая скорость продольной волны.

Как и электромагнитные волны, упругие волны переносят энергию и импульс. Перенос энергии в упругой волне осуществляется за счет потока вектора Умова , аналогичного вектору Пойнтинга , и имеющему смысл плотности потока энергии. Дифференциальное уравнение закона сохранения энергии для упругого поля имеет аналогичный вид:

,

где

 -

плотность энергии упругой волны, которая слагается из кинетической энергии колеблющихся частиц среды и потенциальной энергии упругой деформации;

 -

компоненты вектора Умова (Умов Н.А., 1846-1915).

Альтернативный подход к описанию закономерностей распространения упругих волн в кристаллах основан на представлении первичного волнового уравнения второго порядка системой дифференциальных уравнений в частных производных первого порядка от вектора смещения (Наими Е.К., Хзарджян С.М., 1978). При этом уравнения для поперечных компонент вектора смещения оказываются полностью аналогичными уравнениям Максвелла для электромагнитного поля в вакууме, а для продольных компонент – аналогичными уравнениям плазменных колебаний. Соответствующие уравнения записываются в виде:

для поперечных компонент

для продольных компонент

Преимуществом данного подхода является то, что он открывает возможность исследования упругих волновых процессов в кристаллах на основе математического аппарата, разработанного в электродинамике сплошных сред.

Стоячие волны. При наложении двух встречных волн с одинаковой амплитудой возникают стоячие волны. Возникновение стоячих волн имеет место, например, при отражении волн от преграды. Падающая на преграду волна и бегущая ей навстречу отраженная волна, налагаясь друг на друга, дают стоячую волну

Контрольные вопросы для самопроверки


Измерение силы тока и напряжения в цепях постоянного тока