Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Волновая оптика Статистическая физика Электротехника Элементы кристаллографии Лабораторные работы Электрические цепи постоянного тока Магнитная индукция Контрольная работа

Основы электродинамики Индуктивность соленоида Механические волны ьЭлектромагнитные колебания Вынужденные электрические колебания Энергия и импульс электромагнитной волны Волновая теория света Тепловое излучение

Задачи по курсу общей физики и элекиротехнике

Вынужденные электрические колебания. Метод векторных диаграмм.

Если в цепь электрического контура, содержащего емкость, индуктивность и сопротивление, включить источник переменной ЭДС (рис.16.5), то в нем, наряду с собственными затухающими колебаниями, возникнут незатухающие вынужденные колебания. Частота этих колебаний совпадает с частотой изменения переменной ЭДС.

Рис.16.5. Последовательный колебательный RLC-контур. Физические основы термодинамики Термодинамика, как и молекулярная физика, занимается изучением физических процессов, происходящих в макроскопических системах, т.е. в телах, содержащих огромное число микрочастиц, взаимодействующих друг с другом и внешними телами. Лекции и задачи по физике

Чтобы получить уравнение вынужденных колебаний, надо, согласно второму правилу Кирхгофа, приравнять сумму падений напряжений на элементах контура приложенной ЭДС:

или

где Е0 - амплитуда переменной ЭДС; ω – ее циклическая частота.

Интересующее нас частное решение этого дифференциального уравнения имеет вид:

 


где

Решение соответствующего однородного уравнения, как мы видели в п.5.2, представляет собой свободные затухающие колебания, которые с течением времени становятся исчезающе малыми, и их можно в дальнейшем не учитывать.

Выпишем формулы для силы тока в цепи и падений напряжений на каждом из элементов контура.

Сила тока: ,

 .

 По аналогии с законом Ома для полной цепи по постоянному току величину

называют полным сопротивлением цепи по переменному току. Эта величина представляет собой модуль комплексного сопротивления , называемого также импедансом цепи. Сопротивление R называют активным сопротивлением (на нем выделяется тепло). Чисто мнимые сопротивления ωL и  называют соответственно индуктивным и емкостным реактивными сопротивлениями (на них тепло не выделяется).

Напряжение на сопротивлении R:

,

 .

Напряжение на конденсаторе С:

,

.

Напряжение на катушке индуктивности L:

,

.

Сравнивая написанные формулы, видим, что изменение напряжения на сопротивлении следует за изменением силы тока в цепи без отставания или опережения по фазе, изменение напряжение на конденсаторе отстает по фазе на , а на индуктивности опережает по фазе на  изменение тока. Наглядно это можно изобразить с помощью векторной диаграммы (рис.16.6), вещественная ось которой (ось Х) совпадает с осью токов. Длина каждого вектора на этой диаграмме дает амплитуду соответствующего напряжения, а угол, который составляет данный вектор с осью токов – сдвиг фазы по отношению к изменению силы тока в цепи.

Рис.16.6. Векторная диаграмма для последовательного RLC-контура.

 Амплитуда суммарного напряжения на всех элементах контура, равная амплитуде Е0 действующей в контуре ЭДС, является результатом векторного сложения символических напряжений  и . Этот вектор образует с осью токов угол , показывающий разность фаз между током и ЭДС. Тангенс этого угла равен:

.

Свободные затухающие колебания. Добротность колебательного контура. Всякий реальный колебательный контур обладает сопротивлением. Энергия электрических колебаний в таком контуре постепенно расходуется на нагревание сопротивления, переходя в джоулево тепло, вследствие чего колебания затухают.

Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.

Общие свойства и характеристики волновых процессов. Волновое уравнение. Типы и характеристики волн. Процесс распространения колебаний в пространстве называется волновым процессом или просто волной. Волны различной природы (звуковые, упругие, электромагнитные) описываются сходными дифференциальными уравнениями в частных производных второго порядка по пространственно-временным переменным. Уравнение, описывающее волновой процесс, называется волновым уравнением, функция, которая удовлетворяет этому уравнению – волновой функцией.

Электромагнитные волны. Из уравнений Максвелла следует, что если возбудить с помощью зарядов  переменное электрическое или магнитное поле, в окружающем пространстве возникнет последовательность взаимных превращений электрического и магнитного полей, распространяющихся в виде электромагнитной волны. Для однородной нейтральной (ρ=0) и непроводящей () среды с постоянными проницаемостями ε и μ, волновое уравнение, описывающее электромагнитную волну, распадается на два независимых векторных уравнения соответственно для электрического  и магнитного полей:  , .


Измерение силы тока и напряжения в цепях постоянного тока