Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Волновая оптика Статистическая физика Электротехника Элементы кристаллографии Лабораторные работы Электрические цепи постоянного тока Магнитная индукция Контрольная работа

Основы электродинамики Индуктивность соленоида Механические волны ьЭлектромагнитные колебания Вынужденные электрические колебания Энергия и импульс электромагнитной волны Волновая теория света Тепловое излучение

Задачи по курсу общей физики и элекиротехнике

Колебания и волны

Электромагнитные колебания.

Электрический колебательный контур. Формула Томсона.

Электромагнитные колебания могут возникать в цепи, содержащей индуктивность L и емкость C (рис.16.1). Такая цепь называется колебательным контуром. Возбудить колебания в таком контуре можно, например, предварительно зарядив конденсатор от внешнего источника напряжения, соединить его затем с катушкой индуктивности.

Рис.16.1. Электрический колебательный контур. Теория электромагнитного поля Электромагнитные колебания Решение задач по физике примеры

Поскольку внешнее напряжение к контуру не приложено, сумма падений напряжений на емкости и индуктивности должна быть равна нулю в любой момент времени:

откуда, учитывая, что сила тока , получаем дифференциальное уравнение свободных незатухающих колебаний электрического заряда в колебательном контуре 

.

 Если ввести обозначение

 ,

 то полученное уравнение принимает вид:

.

Решением этого уравнения, как известно, является функция

.

Таким образом, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой ω0, называемой собственной частотой колебательного контура. Период колебаний определяется по формуле Томсона (Thomson W., 1824-1907):

Напряжение на конденсаторе:

,

где  - амплитуда напряжения.

Сила тока в контуре:

.

Сопоставляя полученные выражения, видим, что когда напряжение на конденсаторе, а значит энергия электрического поля, обращается в нуль, сила тока, а, следовательно, энергия магнитного поля, достигает максимального значения (рис.16.2). Таким образом, электрические колебания в контуре сопровождаются  взаимными превращениями энергий электрического и магнитного полей.

Рис.16.2. Графики изменения UC(t) и I(t) в LC-контуре.

Амплитуды тока Im и напряжения Um связаны между собой очевидным соотношением:

.

Второе уравнение Максвелла. В силу общности теоремы Гаусса применительно к любым векторным полям и отсутствия в природе «магнитных зарядов» (о чем уже говорилось ранее), второе уравнение Максвелла в интегральной форме совпадает с теоремой Гаусса для магнитной индукции: Интегрирование производится по произвольной замкнутой поверхности S.

Четвертое уравнение Максвелла в интегральной форме совпадает с теоремой Гаусса для электрической индукции: Интегрирование производится по произвольной замкнутой поверхности S, окружающей систему зарядов qi .

Замкнутая система уравнений Максвелла. Материальные уравнения. Для замыкания системы уравнений Максвелла необходимо еще указать связь между векторами , ,  и , то есть конкретизировать свойства материальной среды, в которой рассматривается электромагнитное поле. Если эти соотношения известны (они называются материальными уравнениями), то по заданному распределению зарядов ρ и токов однозначно находится распределение электрических и магнитных полей в данной среде; или по заданному распределению полей находится распределение зарядов и токов.


Измерение силы тока и напряжения в цепях постоянного тока