Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Волновая оптика Статистическая физика Электротехника Элементы кристаллографии Лабораторные работы Электрические цепи постоянного тока Магнитная индукция Контрольная работа

Основы электродинамики Индуктивность соленоида Механические волны ьЭлектромагнитные колебания Вынужденные электрические колебания Энергия и импульс электромагнитной волны Волновая теория света Тепловое излучение

Задачи по курсу общей физики и элекиротехнике

Если тепловая и электромагнитная энергия по сути аналогичны друг другу в тепловых и электрических процессах, то потенциал аналогичен температуре, также как аналогичны феноменологические термины теплоты и электричества. И как теплота переходит из области высоких температур в область низких температур, так и электричество переходит из области с высоким потенциалом в область с низким потенциалом. Так возникло понятие электрического тока I, как перетока определённого количества электричества Q=It от высокого потенциала к низкому. Единицей измерения электрического тока в системе СИ установлен Ампер (А).

В дальнейшем, когда появилось понятие зарядов q , как активных участников электромагнитного взаимодействия, то электрический ток стали представлять в виде направленного движения зарядов, которое приводит к изменению потенциальной картины электромагнитного поля. И было принято, что положительные заряды перетекают от высокого потенциала к низкому, а отрицательные в обратную сторону. Но это хорошо понятно в случае более или менее свободного перемещения частиц-носителей заряда, например в вакууме, ионизированных газах или жидкостях. В твёрдых телах, где атомы могут быть жёстко связаны другими типами взаимодействия, смещение зарядов скорее всего передаётся по цепочке. Это видно из аналогии с продольным механическим ударом по ряду плотно прижатых шариков, где передаётся возмущение, а шарики остаются на месте, кроме крайних.

Поэтому скорее всего электрический ток можно представить, как некую меру динамического изменения потенциальной картины электромагнитных сил при смещении (но не движении) частиц с электрическим зарядом. Рассмотрим примеры квантовых процессов. Фотоэффект – это вырывание электронов из металла под действием электромагнитной волны. На квантовом языке происходит следующее: в начальном состоянии имеется электрон, связанный с проводником, и фотон с энергией .

Как видно, электрический ток – это некий параметр, такой же как скорость. И если скорость можно измерить путём измерения расстояния и времени, необходимого для преодоления этого расстояния, так и электрический ток можно измерить только по косвенным параметрам, например по величине возникающей магнитной силы или по количеству тепла, выделяющегося при механическом смещении заряженных частиц.

Почему эти 2 параметра – напряжение U и ток I, сохранились в практике с давних времён, несмотря на все успехи физиков, нашедших с тех пор электрон и создавших теорию поля?

Ответ простой:

произведение этих параметров определяет электрическую мощность S=UI,

а отношение – свойства материалов среды с электромагнитным полем.

Единицей измерения активной мощности Р в системе СИ установлен Ватт (Вт), который в точности соответствует единице измерения мощности в механических и тепловых системах - ватту (вт). Разница только в размере первой буквы обозначения.

Единицей измерения реактивной мощности Q в системе СИ установлен Вольт-Ампер- реактивный (ВАр).

Единицей измерения полной мощности S в системе СИ установлен Вольт-Ампер (ВА).

Знание электрической мощности в каждой точке пространства, занятого электромагнитным полем, позволяет решить главную утилитарную задачу электротехники: создание необходимого распределения электромагнитной энергии в устройствах по её генерации, распределению и использованию.

Конечно, физиков, интересующихся материей, не устроили эти параметры. Они ввели понятия заряда Q и напряженности электрического поля Е (соответственно, напряженность магнитного поля Н), как отношение электрической (магнитной) силы, действующей на единичный заряд, к величине этого заряда E=FE/q. Но произведение S=ЕхН есть плотность потока энергии. Соответственно, квадраты напряженности поля определяют его энергию.

На основе этих понятий была построена система уравнений классической электродинамики ( Максвелл, 1873 г.)

rot H = D/t + j

rot E = -B/t

div D = r

div B = 0

В нашу задачу не входит подробное изучение этих уравнений, поскольку большинство электротехнических задач не требуют такого мощного математического аппарата. Но следует отметить, что электротехникам с их электрической мощностью приходится постоянно интегрировать по времени, чтобы получить энергию. В то время как физикам, чтобы получить мощность, требуется дифференцировать по времени.

Таким образом, нам необходимы всего 2 параметра - напряжение U и ток I, чтобы представить всю картину мгновенного распределения электромагнитной энергии в каком-либо электрическом устройстве.

Напряжение U между двумя точками физической среды с разными потенциалами j1 и j2 определяет действие электромагнитных сил, которые в силу подвижности заряженных частиц среды приводят к изменению потенциальной картины, то есть к возникновению явлений, которые можно описать параметром электрического тока I. Или, просто говоря, к возникновению электрического тока I между этими двумя точками.

При этом электромагнитные силы совершают механическую работу, создают новую конфигурацию электрического поля и возникает поле магнитных сил (магнитное поле). Другими словами электромагнитная энергия переходит в механическую(тепловую), электрическую и магнитную энергии. И этот переход определяется параметрами физической среды, которые определяют подвижность и взаимодействие частиц, обладающих зарядом, а также распределение электрических и магнитных полей с учётом электрических зарядов и магнитных моментов материальных частиц, составляющих эту среду.

Вспомним закон Ома, который определяет переход электромагнитной энергии в механическую (тепловую) энергию

 U=R I , где R=r× l/S – так называемое сопротивление, и определяемое характеристикой материала r (удельное сопротивление), а также геометрическими параметрами пространства l/S , занятого электромагнитным полем между точками 1 и 2 (расстояние между ними и поперечная площадь пространства, по которому проходит электрический ток в случае цилиндрической формы пространства, занятого электромагнитным полем).

Единицей измерения сопротивления R в системе СИ установлен Ом=В/А. Иногда для удобства используют обратную величину сопротивления, так называемую проводимость Y, которая измеряется в Сименсах (См).

Электрическое поле будет определяться тоже аналогичным известным соотношением

 I=d(СU)/dt илиU= U0 +ò Id t / С, где С- электрическая емкость, которая в случае двух бесконечных пластин представляется соотношением С=e×d/S, то есть диэлектрической проницаемостью e , которая определяется свойствами материала, и геометрическими параметрами среды d/S (расстояние между пластинами и их площадью).

Единицей измерения электрической ёмкости С в системе СИ установлена Фарада (Ф).

Магнитное поле будет определяться известным законом электромагнитной индукции (закон Фарадея, rot E = -B/t )

 U = dФ/dt=d(LI)/dt, где L=mN2S/lm – индуктивность, определяемая магнитной проницаемостью m , которая зависит от свойств материала, и геометрическими параметрами N2S/lm (сечением пространства, по которому проходит магнитный поток S, длиной магнитной силовой линии lm и количеством витков N с током, создающим магнитный поток). К определению магнитного потока и индуктивности мы вернёмся позже при изучении свойств магнитного поля.

Единицей измерения индуктивности L в системе СИ установлен Генри(Гн).

Эти 3 формулы можно рассматривать в обобщенной форме, которая, в случае гармонической формы тока и напряжения и независимости от них значений элементов R, С, L, принимает вид обобщенного закона Ома U=ZI, где Z является импедансом участка пространства с электрическим током I.

Обобщенную проводимость обычно обозначают буквой Y=1/Z.

Соответственно, мощность выделяемая в нагрузке Z будет S=ZI2=YU2.

Основные представления об электричестве. Ток и напряжение – параметры математических моделей электроприборов. Энергия и мощность – почувствуйте разницу между физиками и электротехниками. 3 великих элемента – резистор, индуктивность и конденсатор, их линейность и нелинейность. Закон Ома.

Таким образом, если мы знаем механические и электромагнитные свойства используемого электромагнитным полем физического пространства, а также его геометрию, мы можем всегда рассчитать мощности, возникающие при протекании токов в этом пространстве.

Используя различные элементы, в том числе проводники и изоляторы, можно создать электрическую схему преобразования электрического сигнала - либо из элементов на бумаге, с последующим математическим расчётом по приведённым выше соотношениям между током и напряжением (см. закон Ома) , либо из компонентов на лабораторном стенде с последующим измерением напряжений и токов измерительными приборами. В первом случае мы имеем так называемое математическое моделирование, а во втором случае – аналоговое моделирование.

Электротехники, пользуясь тем, что в большинстве случаев применяются линейные элементы, а также то, что применяемые источники выдают либо постоянный, либо гармонический сигнал, пошли путём упрощения модели и разработки простых методов расчёта системы уравнений. Понижение порядка системы уравнений за счёт огрубления модельного представления (снижение количества ветвей и узлов) также вполне допустимо, так как все электротехнические устройства выполняются с определёнными допусками. Как мы поступили с источником, также можно поступить и с нагрузкой. В этом случае мы имеем дело с двумя «чёрными ящиками», оборудованных выходными клеммами.

Их называют двухполюсниками. Если какой-либо двухполюсник содержит источник, то его называют активным, если не содержит, то пассивным. В приведённой выше схеме сопротивление Z может рассматриваться как пассивный двухполюсник


Измерение силы тока и напряжения в цепях постоянного тока