Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Полупроводниковые выпрямители Исследование полупроводниковых диодов, стабилизатора, биполярных транзисторов, Электронный усилитель на транзисторах Сглаживающие фильтры Исследование стабилитронов, варикапов

Методические указания к выполнению лабораторных работ по электронике

Лабораторная работа № 2

Исследование биполярных транзисторов

Цель работы: изучение принципа действия, исследование статических характеристик и определение дифференциальных параметров биполярных транзисторов, включенных по схемам: общая база (ОБ) и общий эмиттер (ОЭ)

Методические указания по подготовке к работе

Транзистором  называется полупроводниковый прибор с одним или несколькими p-n-переходами, пригодный для усиления мощности и имеющий три или более выводов. Наиболее распространены биполярные транзисторы с тремя выводами. В процессах прохождения токов биполярных транзисторов участвуют основные и неосновные носители зарядов. По порядку чередования p-n-переходов различают биполярные транзисторы структуры p-n-p и n-p-n. Принцип действия обоих типов биполярных транзисторов одинаков.

Система обозначений биполярных транзисторов состоит из буквенных и цифровых элементов. Например, КТ602А или 2Т602А. В начале обозначения ставится буква или цифра, определяющая исходный полупроводниковый материал («Г» или «К», 1 или 2). Затем идет буква, характеризующая подкласс прибора: «Т» - биполярный транзистор, «П» - полевой. После этих букв идет число, условно характеризующее частотные свойства, мощность и номер разработки транзистора. Последний элемент – буква, условно определяющая классификацию транзисторов по параметрам, изготовленных по единой технологии.

Транзистор представляет собой монокристалл полупроводника с двумя взаимодействующими p-n-переходами. При получении в кристалле полупроводника двух взаимодействующих  переходов возможно различное чередование полупроводников. Если полупроводники чередуются: дырочный, электронный и дырочный, то транзистор имеет структуру p-n-p (рис. 2.1). При чередовании полупроводников: электронный, дырочный и электронный, транзистор имеет структуру n-p-n.

Среднюю область кристалла называют базой (Б), одну крайнюю область – эмиттером (Э), а другую - коллектором (К). При изготовлении транзистора добиваются выполнения следующих условий:

концентрация основных носителей заряда в эмиттере должна значительно превышать концентрацию основных носителей заряда в базе;

ширина активной области базы, т.е. области, находящейся непосредственно между запирающими слоями эмиттерного и коллекторного p-n-переходов, должна быть меньше диффузионной длины неосновных носителей заряда в базе;

площадь коллекторного перехода должна быть больше площади эмиттерного перехода.

Условные графические изображения биполярных транзисторов показаны на рис. 2.2. Работа транзисторов структуры p-n-p (рис. 2.2,а) и структуры n-p-n (рис. 2.2,б) аналогична, различие заключается в полярности подключения источников внешних напряжений и в направлении прохождения токов через электроды. 

При включении транзистора в схему один из его электродов считается входным, второй – выходным, а третий – общим. На входной и выходной электроды транзистора подаются от внешних источников напряжения, отсчитываемые относительно общего электрода. В зависимости от того, какой электрод является общим для входной и выходной цепей, существуют три схемы включения биполярного транзистора. 

В схеме с общей базой (ОБ) (рис. 2.3,а) входным электродом является эмиттер, а выходным – коллектор. В схеме с общим эмиттером (ОЭ) (рис. 2.3,б) входным электродом является база, а выходным – коллектор. В схеме с общим коллектором (ОК) (рис. 2.3.в) входным электродом является база, а выходным – эмиттер.

 


 UЭБ UКБ UБЭ UКЭ UБК UЭК 


 а) б) в)

Рис. 2.3. Схемы включения биполярного транзистора

В зависимости от величины и полярности напряжений, приложенных к входным и выходным электродам биполярного транзистора, различают следующие основные режимы его работы: отсечки, насыщения, активный и инверсный.

 Рассмотрим режимы работы и статические характеристики биполярного транзистора, включенного по схеме с общей базой.

 В режиме отсечки полярность подключения источников смещения эмиттерного (UЭБ) и коллекторного (UКБ) переходов такова, что оба p-n-перехода транзистора находятся в обратном включении

В этом случае запирающие слои на границах p- и n-областей расширяются и их сопротивления для основных носителей заряда увеличиваются. Вследствие этого через p-n-переходы проходят обратные токи коллектора IКБ0 и эмиттера IЭБ0, обусловленные движением неосновных носителей заряда. Эти токи зависят от площади p-n-перехода и концентрации неосновных носителей заряда, на которую существенное влияние оказывает температура кристалла полупроводника.

В режиме насыщения эмиттерный и коллекторный p-n-переходы транзистора находятся в прямом включении (рис. 2.4,б). В этом случае запирающие слои на границах p- и n-областей сужаются, и происходит инжекция дырок из эмиттера и коллектора в базу. В результате этого в базе накапливаются неосновные носители заряда, а через p-n-переходы проходят токи насыщения коллектора IКн и эмиттера IЭн, обусловленные движением основных носителей заряда.

Поскольку концентрация основных носителей заряда значительно больше концентрации неосновных носителей заряда, то IКн >> IКБ0 и IЭн > IЭБ0. Поэтому считают, что в режиме отсечки транзистор закрыт, а в режиме насыщения полностью открыт.

Входное  сопротивление полевого транзистора велико, т.к. управляющий p-n-переход включается в обратном направлении. Поэтому в цепи затвора протекает небольшой ток затвора Iз. Большое входное сопротивление полевых транзисторов является их существенным  преимуществом по сравнению с биполярными транзисторами. Условные графические изображения и схемы включения полевых транзисторов с управляющим p-n-переходом представлены на рис. 1.3. В условных графических изображениях сплошной вертикальной линией обозначен канал полевых транзисторов с управляющим p-n-переходом.

Упрощенная структура МДП–транзистора с индуцированным каналом p-типа показана на рис. 1.5,а. В полупроводнике n-типа, называемом подложкой, методом диффузии образованы две p+-области, не имеющих между собой электрического соединения. Одна из них называется стоком, другая – истоком. Эти области отделены друг от друга двумя включенными встречно p-n-переходами, образованными на границах p- и n-областей. Поэтому если между стоком и истоком включить источник постоянного напряжения Uси, то в цепи пойдет очень маленький ток, обусловленный обратным током p-n-переходов.

К дифференциальным параметрам полевых транзисторов относятся: проводимость прямой передачи, или крутизна характеристики управления

За последний период развития в области связи, наибольшее распространение получили оптические кабели (ОК) и волоконно-оптические системы передачи (ВОСП) которые по своим характеристикам намного превосходят все традиционные кабели системы связи. Связь по волоконно-оптическим кабелям, является одним из главных направлений научно-технического прогресса. Оптические системы и кабели используются не только для организации телефонной городской и междугородней связи, но и для кабельного телевидения, видеотелефонирования, радиовещания, вычислительной техники, технологической связи и т.д.
Исследование полупроводниковых выпрямителей