Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Теорема синусов Изображение многоугольников и многогранников Построения на изображениях Параллелепипед Касания круглых тел с прямой и плоскостью Поверхности второго порядка Ранг матрицы Метод Гаусса

Конспект школьного курса по математике. Примеры решения задач

Касания круглых тел с прямой и плоскостью

Касательной плоскостью к сфере называется плоскость, имеющая единственную общую точку со сферой.

Через любую точку A сферы проходит единственная касательная плоскость. Эта плоскость перпендикулярна радиусу OA сферы, где O – центр сферы.

Доказательство
1
Рисунок 5.5.1.

Пусть α – некоторая плоскость, проходящая через A и перпендикулярная OA (рис. 5.5.1). Все точки плоскости α, кроме точки A , удалены от точки O на расстояние большее, чем OA , поскольку кратчайший путь от точки до плоскости – это путь по перпендикуляру к плоскости. Значит, α – касательная плоскость. Обратно, если некоторая плоскость касается сферы в точке A , то A – ближайшая к O точка плоскости. Значит, эта плоскость совпадает с α.

Теорема 5.3. Геометрические приложения двойного интеграла

Если расстояние от центра сферы до плоскости меньше радиуса сферы, то линия сечения сферы этой плоскостью – окружность.

Доказательство
Рисунок 5.5.2. Пример. Найти циркуляцию векторного поля = yi – x j + z k вдоль окружности x = r cos t , y = r sin t , z = 1 в положительном направлении, т.е. 0 < t < 2

Пусть задана сфера ω ( O R ) и плоскость α, O 1  = П p α O , OO 1  <  R по условию. Если произвольная точка A принадлежит линии пересечения сферы и плоскости, то OA  =  R . Из прямоугольного треугольника OO1A имеем Поскольку величины R и OO 1 фиксированы, то и величина O 1 A фиксирована. Это означает, что точка пересечения плоскости α и сферы ω лежит на данном расстоянии от точки O 1, следовательно, точка A лежит на окружности

Из теоремы следует, что, когда расстояние от центра шара до плоскости меньше радиуса, сечение шара этой плоскостью – круг. Если плоскость удалена от центра сферы на расстояние R , то она является касательной плоскостью

Плоскости, равноудаленные от центра сферы, пересекают ее по равным окружностям

Прямая, касающаяся сферы – это прямая, которая имеет единственную общую точку со сферой. Аналогично можно ввести понятие касательной прямой к поверхности конуса (цилиндра) , однако при этом рассматриваются прямые, не проходящие через точки на основании конуса (цилиндра) и через вершину конуса.

Выпуклый многогранник называется вписанным , если все его вершины лежат на некоторой сфере. Эта сфера называется описанной для данного многогранника Выпуклый многогранник называется описанным , если все его грани касаются некоторой сферы. Эта сфера называется вписанной для данного многогранника.

Теорема о вписанной сфере треугольной пирамиды

Если сфера вписана в многогранник, то объем этого многогранника равен где S – площадь полной поверхности многогранника, r – радиус вписанной сферы.


Полярная и сферическая системы координат