Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Предел последовательности Полярная и сферическая системы координат Периодические функции Квадратный трехчлен Обратные тригонометрические функции Графические методы решения задач Параллельные прямые Сумма углов треугольника

Конспект школьного курса по математике. Примеры решения задач

Параллельные прямые

Две прямые называются параллельными , если они не пересекаются.

Для обозначения параллельности прямых будем пользоваться символом ||.

Определяющее свойство задается аксиомой:

Аксиома 3.1. 

Через точку, не лежащую на данной прямой, можно провести прямую, параллельную данной, и притом только одну. Задача о вычислении массы тела Математика вычисление интеграла

Для описания свойств параллельных прямых, вытекающих из определения и аксиомы 3.1, введем новые понятия и утверждения, связанные с взаимным расположением трех прямых на плоскости.

Прямая AC называется секущей по отношению к прямым AB и CD , если она пересекает обе прямые. Если прямая AC является секущей по отношению к прямым AB , CD и, кроме того, точки B и D лежат в одной полуплоскости от секущей AC , то углы BAC и DCA называются внутренними односторонними . Если AC – секущая по отношению AB и CD , а точки B и D лежат в разных полуплоскостях от AC , то углы BAC и DCA называются внутренними накрест лежащими .

Рисунок 3.1.1.

Если в данной паре внутренних накрест лежащих углов один из углов заменить на вертикальный ему, то полученные углы называются соответственными углами данных прямых с секущей.

Рисунок 3.1.2.

Общей точкой прямых a и b называется точка, лежащая на прямой a и одновременно на прямой b . Можно, например, представить две прямые, которые имеют ровно одну общую точку.

Такие две прямые называются пересекающимися. Отрезком называется часть прямой, которая содержит две разные точки A и B  этой прямой ( концы отрезка ) и все точки прямой, которые лежат между ними ( внутренние точки отрезка ).

Углом называется фигура, состоящая из точки ( вершина угла ) и двух различных лучей с началами в этой точке – сторон угла

Различные виды углов Два угла называются смежными , если у них одна сторона общая, а другие стороны являются дополнительными лучами.

Иначе такую теорему можно назвать признаком параллельности прямых

Две прямые, параллельные третьей, параллельны. Это свойство называется транзитивностью параллельности прямых.


Поверхности второго порядка