Примеры решения задач контрольной работы по электротехнике

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Электрические цепи постоянного тока Магнитная индукция Контрольная работа Волновая оптика Статистическая физика Электротехника
Цепи постоянного тока
Определить эквивалентное сопротивление
цепи
ЦЕПИ ПЕРЕМЕННОГО ТОКА
Временная диаграмма напряжения
Резонансные явления
Цепи со взаимной индуктивностью
ТРЕХФАЗНЫЕ ЦЕПИ
ЦЕПИ С НЕСИНУСОИДАЛЬНЫМИ
ТОКАМИ
ПЕРЕХОДНЫЕ ПРОЦЕССЫ
В ЛИНЕЙНЫХ ЦЕПЯХ
Построить в масштабе векторную диаграмму
Катушка с активным сопротивлением
В трёхфазную четырехпроводную сеть
Однофазный понижающий трансформатор
Расчет выпрямителей переменного тока

 

ЦЕПИ ПЕРЕМЕННОГО ТОКА

Синусоидальные токи, напряжения и ЭДС.

В линейной электрической цепи при действии периодических ЭДС с одинаковым периодом Т, спустя достаточно большой промежуток времени от начала действия этих ЭДС, устанавливаются во всех участках цепи периодические токи и напряжения с тем же периодом Т. Величина  является частотой ЭДС, тока или напряжения. Частота численно равна числу периодов в единицу времени и измеряется в герцах (Гц).

Наибольший интерес представляют периодические синусоидальные токи, напряжения и ЭДС:

 (2.1)

Величины e, u, i называют мгновенными значениями. Их наибольшие значения Em, Um, Im называют амплитудными значениями. Величину  называют угловой частотой. Аргумент синуса называют фазой, величины ψe, ψu, ψi – начальной фазой.

2. Действующие и средние значения синусоидальных величин:

.

 
 (2.2)

3. Изображение синусоидальной функции комплексным числом.

В курсе теории линейных электрических цепей используются следующие формы записи комплексного числа:

алгебраическая ;

показательная ; (2.3)

тригонометрическая ,

здесь  – модуль комплексного числа;

 – аргумент комплексного числа;

 – действительная часть комплексного числа;

 – мнимая часть комплексного числа.

Алгебраическая форма удобна при сложении и вычитании комплексных чисел, а показательная – при умножении, делении, возведении в степень, извлечении корня.

4. Комплексные выражения синусоидальной функции времени, ее производной и интеграла приведены в табл. 2.1.

Соответствующие комплексные амплитуды запишем так:

.

 
 (2.4)

Таблица 2.1

Временная и комплексная записи

Функция

Производная функции

Интеграл от функции

Запись во временной области

Комплексная функция

времени

Комплексная амплитуда

Комплексное действующее значение

Согласно ГОСТу любое комплексное значение обозначается соответствующей буквой с чертой под ней, например , . Однако для величин, изменяющихся с течением времени синусоидально, разрешается комплексные величины обозначать с точкой над соответствующей буквой, таковы , напряжение , ток . Так что такие записи эквивалентны: , , .

5. Пассивные элементы электрической цепи (табл. 2.2).

Пассивный элемент электрической цепи определяется своим комплексным сопротивлением  – комплексным числом, равным отношению комплексного напряжения на зажимах данного элемента к комплексному току этого элемента:

. (2.5)

В табл. 2.2 приведены пассивные элементы, их изображения и обозначения.

6. Законы Кирхгофа.

 (2.6)

7. Комплексная мощность.

, (2.7)

где  – полная мощность;

 – активная мощность;

 – реактивная мощность;

 – сопряженный комплекс тока.

Баланс мощностей

. (2.8

Реактивные сопротивления и проводимости электрических цепей