Математика примеры решения задач курсовой работы

Интегрирование по частям

ПРИМЕР 2. Вычислить , применяя интегрирование по частям,  – число, .

РЕШЕНИЕ. Полагаем , . Тогда , . Применяя формулу интегрирования по частям, получаем  (см. формулу 15 таблицы)

.

Из уравнения  находим интеграл

,

который в силу его распространенности можно отнести к табличным.

Интегралы вида  и  вычисляются
аналогично, но после двукратного интегрирования по частям.

ПРИМЕР 3. Вычислить .

РЕШЕНИЕ.

.

Получим уравнение ,
из которого находим искомый интеграл

.

Аналогично вычисляется интеграл

(рекомендуем провести подробные вычисления).

ПРИМЕР 4. Вычислить интеграл , используя ранее
полученную формулу.

РЕШЕНИЕ. Здесь , . Получаем

.

Понятие о РЕКУРРЕНТНОМ выражении для интеграла покажем на примере вычисления интеграла от тригонометрической функции.

ПРИМЕР. Вычислить интеграл  до конца при общем значении  громоздко. Поэтому обычно  выражают через , ,  , ; получают рекуррентное соотношение для .

.

Разрешая относительно  полученное равенство, имеем соотношение , , пользуясь которым можно вычислять (последовательно)  при всяком , начиная с .

Например, ;  и т.д.


Вычислить производную функции