Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Математика примеры решения задач курсовой работы

Неопределенный интеграл

Интегрирование тригонометрических функций вида

1. Одно из чисел  или  является положительным нечетным числом. Пусть, например,  – произвольное, , где . Тогда для интеграла  отделим множитель  в подынтегральном выражении и подведем под дифференциал . Оставшуюся четную степень  выразим через , используя формулу .
В результате получаем

,

где  – произвольное, а   – целое неотрицательное число.
Интеграл   оказывается суммой интегралов, каждый из которых вычисляется по формуле 1 таблицы.

ПРИМЕР 1. Вычислить .

РЕШЕНИЕ. Здесь ,  – нечетное, положительное число.

Отделим   и подведем под дифференциал, а  представим в виде . Тогда имеем

.

Аналогично вычисляются интегралы вида , где ,  – любое число.

ПРИМЕР 2. Вычислить .

РЕШЕНИЕ. Здесь  – нечетное, положительное число, .

Отделяя множитель  и подведя его под знак дифференциала , получим

.

2. Пусть  и   – четные числа.

Если ,  и , , т.е.  и  – неотрицательные четные числа, то рекомендуется последовательно понижать показатели степеней функций  и  до тех пор, пока они не станут нечетными или нулевыми, используем формулы , , .


Вычислить производную функции