Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Математика примеры решения задач курсовой работы

Неопределенный интеграл

ПРИМЕР. Вычислить интеграл .

РЕШЕНИЕ. В силу свойства 4 имеем .

Согласно свойству 5 выполняются равенства: , .

Из ранее рассмотренных примеров имеем  и . Поэтому . Отсюда в силу свойства 3 .

 Свойство 6. Пусть  – первообразная для  на ; функция  – произвольная дифференцируемая на  функция, множество значений которой совпадает с . Тогда равенство   сохраняется, если заменить в обеих частях его переменную интегрирования  функцией

.

В самом деле, вычисляя дифференциал сложной функции , получим выражение

,

совпадающее с подынтегральным выражением интеграла, что
доказывает справедливость формулы.

Свойство 6 называют обычно свойством инвариантности формул интегрирования и используют при вычислении интегралов (замена переменной).

ПРИМЕР. Равенство  в силу свойства 6 можно записать в виде , где  (или ) – произвольная дифференцируемая функция, и использовать в качестве формулы для вычисления многих интегралов. Например, , .

Заметим, что более общая формула  ( – произвольное число, ) следует из равенства , если использовать свойство 6.

Аналогично из каждой формулы дифференцирования элементарной функции   путем ее обращения получается "интегральная" формула . Подобные формулы составляют таблицу основных интегралов, которые называются для краткости "табличными".

В практике вычисления неопределенных интегралов обычно пользуются специальными справочниками.

ТАБЛИЦА  НЕОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ

1. . 2. .

3. .

4. .  5. .

6. .  7. .

8. .  9. .

10. .

11. .

12. .  13. .

14.

15. .

Все формулы таблицы интегралов можно проверить, опираясь на определение неопределенного интеграла. Например, справедливость формулы 12 следует из равенств

.


Вычислить производную функции