Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Математика примеры решения задач курсовой работы

Непрерывность функции в точке

ОПРЕДЕЛЕНИЕ (непрерывность в точке). Пусть функция  задана на , . Тогда

( – непрерывна в точке ) .

Итак, непрерывность в точке функции предполагает задание функции в самой точке   (конечная точка) и в некоторой ее окрестности, при этом должны выполняться условия:

существование конечного предела функции в конечной точке;

значение предела совпадает со значением функции в этой точке.

Понятие точки разрыва функции

Пусть , , . Тогда если точка  не является точкой непрерывности функции , то она – точка разрыва функции. При  или  также возможен "разрыв" слева или справа функции
(см. рисунок), если   рассматривается на .

Условия непрерывности функции в точке могут нарушаться в следующих ситуациях (классификация точек разрыва):

, но ;  – точка устранимого разрыва; на рисунке это точки , ;

, , но ;  – точка разрыва первого рода;  – скачок функции в точке ; на рисунке это точка , , ;

  – точка разрыва второго рода в остальных случаях; на рисунке это точки  и .

Свойства (локальные) функции, непрерывной в точке, можно перефразировать, исходя из соответствующих теорем о функциях, имеющих конечный предел в конечной точке. Перечислим некоторые из них.


Вычислить производную функции