Начертательная геометрия

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Начертательная геометрия
Начертательная геометрия
Виды проецирования
Проецирование точки на две плоскости проекций
Натуральная величина отрезка прямой
Взаимное положение двух прямых
Плоскость
Прямая и точка в плоскости
Параллельность плоскостей
Параллельность прямой и плоскости
Основные задачи замены плоскостей проекций
ОБРАЗОВАНИЕ И ИЗОБРАЖЕНИЕ ПОВЕРХНОСТЕЙ
Цилиндроид, коноид, косая плоскость.
Пересечение поверхностей плоскостью
Прямой круговой усечённый конус
Сущность аксонометрического проецирования
Косоугольная фронтальная диметрия
 

Прямая и точка в плоскости. Прямые уровня плоскости.

Позиционными задачами называются задачи, в результате решения которых можно ответить на вопрос о взаимном расположении заданных геометрических фигур. Они бывают двух видов:

Задачи на пересечение (a) построениe линий пересечения двух поверхностей, б) определение точек пересечения линии с поверхностью

Задачи на взаимную принадлежность геометрических элементов (например, на принадлежность точки поверхности).

Прямая и точка в плоскости.

Точка принадлежит плоскости, если она принадлежит какой-нибудь прямой, лежащей в этой плоскости.

Из элементарной геометрии известно, что прямая принадлежит плоскости, если:

oна проходит через две точки, принадлежащие плоскости;

oна проходит через 1 точку, принадлежащую плоскости, и параллельна прямой, лежащей в плоскости.

Из первого положения следует, что если прямая принадлежит плоскости, то ее одноименные следы лежат на одноименных следах плоскости.

Рис.1

Рис.2

Пусть следами задана плоскость общего положения Р, построим в этой плоскости прямую l.

Главные линии плоскости.

Прямые, принадлежащие заданной плоскости и плоскости уровня, называются линиями уровня.

Прямые, принадлежащие плоскости и перпендикулярные к линиям уровня, называются линиями наибольшего наклона плоскости к плоскости проекций. Иногда линию наибольшего наклона плоскости к плоскости Н называют линией наибольшего ската.

Рис.3

Линии уровня.

Бывают трех видов:

Горизонталь плоскости

Рис.4

(h)(hH)
h2X
h1H

Фронталь плоскости

Рис.5

(f)(fV)
f1X
f2V

Профильная прямая плоскости

Рис.6

(p)(pW)
(p1p2)X
p3W

Пример: Построить линию наибольшего ската плоскости и определить угол наклона плоскости к плоскости проекций Н.

У линии наибольшего ската на эпюре горизонтальная проекция всегда перпендикулярна горизонтальной проекции горизонтали или горизонтальному следу.


Рис.7

Пример: Найти недостающую проекцию точки А, лежащей в плоскости

Так как AAl

В качестве прямой l следует брать линию уровня плоскости, так как построение ее ортогональных проекций проще, чем построение проекций любой другой прямой, принадлежащей плоскости.

Рис.8

Взаимное положение плоскостей.

Две плоскости в пространстве могут пересекаться по собственной и несобственной прямой, следовательно они могут пересекаться или быть параллельными.

Содержание и задачи курса начертательной геометрии