Начертательная геометрия

Начертательная геометрия
Виды проецирования
Проецирование точки на две плоскости проекций
Натуральная величина отрезка прямой
Взаимное положение двух прямых
Плоскость
Прямая и точка в плоскости
Параллельность плоскостей
Параллельность прямой и плоскости
Основные задачи замены плоскостей проекций
ОБРАЗОВАНИЕ И ИЗОБРАЖЕНИЕ ПОВЕРХНОСТЕЙ
Цилиндроид, коноид, косая плоскость.
Пересечение поверхностей плоскостью
Прямой круговой усечённый конус
Сущность аксонометрического проецирования
Косоугольная фронтальная диметрия
 

Пример 2. Дано: Прямой круговой усечённый конус, расположенный вертикально (на H) и цилиндр, расположенный горизонтально (на W). Оси цилиндра и конуса пересекаются в точке O.

Нужно: Построить их линию пересечения.

Как и в предыдущем примере, определяем сначала характерные точки линии пересечения:

A и B - высшая и низшая точки

C и D - точки, определяющие видимость линии пересечения на плоскости проекций H.

Если взять в качестве вспомогательных плоскостей фронтальные или профильные плоскости, то они пересекут конус по гиперболам, а не по простым линиям, как требуется для построения. Следовательно, такие плоскости неудобны. Вспомогательные горизонтальные плоскости T пересекают конус по окружностям, а цилиндр - по образующим. Та и другая линия - простые. Искомые точки (E, F, K, L) находим на пересечении образующих с окружностями.

Рис.7

Рис.8

Определение линии пересечения поверхностей с помощью вспомогательных сферических поверхностей.

Вспомогательные сферические поверхности применяются, когда оси поверхностей вращения пересекаются друг с другом и параллельны какой-либо плоскости проекций.

Метод основывается на известном свойстве:
"Две любые соосные поверхности вращения пересекаются по окружностям, проходящим через точки пересечения меридианов поверхностей".

Плоскости окружностей сечения перпендикулярны оси поверхности вращения, а центры окружностей принадлежат этой оси. Поэтому, если оси поверхностей вращения параллельны плоскости проекции, то на эту плоскость окружности сечения проецируются в отрезки прямых, перпендикулярных проекциям оси вращения.

В качестве вспомогательной секущей поверхности вращения используют сферу, т.к. её просто вычертить.

Рис.9

Рис.10

Пример. Дано: 2 поверхности вращения - цилиндр и конус, оси которых пересекаются и параллельны плоскости проекций V.

Нужно: Найти (построить) линию пересечения этих поверхностей вращения с помощью вспомогательных концентрических сфер.

Точки, наиболее удалённые от оснований малого конуса, найдём, вписав сферу в большой конус.

Проекции линии пересечения представляют собой кривые 2-го порядка. Это следует из теоремы:
"Если пересекающиеся поверхности 2-го порядка имеют общую плоскость симметрии, то линии их пересечения проецируются на эту плоскость (или параллельную ей) в кривую 2-го порядка."

Рис.11

Рис.12

Пересечение прямой с поверхностью.

Для нахождения точек встречи прямой с поверхностью любого типа, т.н. точек входа и выхода, поступают точно так же, как и при нахождении точек встречи прямой с плоскостью:

Прямую заключают в плоскость-посредник S: mS

Определяют линию пересечения l плоскости S с поверхностью : l=S

Искомые точки входа и выхода прямой m определяют как результат пересечения её с линией пересечения l: t1,2=lm

Чтобы получить рациональное решение, следует использовать наиболее простой способ получения линии пересечения l. В качестве линии пересечения стремятся получить либо прямую, либо окружность. Этого можно достичь:

путём выбора положения вспомогательной секущей плоскости;

переводом прямой в частное положение.

В качестве вспомогательной может быть выбрана как плоскость частного, так и плоскость общего положения.

Пример 1. Дано: Наклонная трёхгранная призма, стоящая на плоскости H.

Нужно: Найти точки пересечения её поверхности c прямой m общего положения.

Рис.1

Пример 2. Дано: Прямой круговой конус.

Нужно: Построить точки пересечения поверхности конуса и прямой m общего положения.

Заключим прямую n в плоскость, проходящую через вершину S конуса. Для этого возмём точку 1 на n (ST)(mT). Через S2 проводим фронтальную проекцию горизонтали. Находим след прямой n. Через него проводим THh.

Рис.2

Содержание и задачи курса начертательной геометрии