Фонарь-электрошокер

Гуманитарные науки

У нас студенты зарабатывают деньги

 Дипломы, работы на заказ, недорого

Дипломы, работы на заказ, недорого

 Cкачать    курсовую

Cкачать курсовую

 Контрольные работы

Контрольные работы

 Репетиторы онлайн по английскому

Репетиторы онлайн по английскому

Приглашаем к сотрудничеству преподователей

Приглашаем к сотрудничеству преподователей

Готовые шпаргалки, шпоры

Готовые шпаргалки, шпоры

Отчет по практике

Отчет по практике

Приглашаем авторов для работы

Авторам заработок

Решение задач по математике

Закажите реферат

Закажите реферат

Обозначение материалов Основная надпись Построение лекальных кривых Уклон и конусность Правила нанесения размеров Примеры построения сопряжени Контур детали с элементами сопряжения Геометрические построения

Конструкторская документация

 

Построение лекальных кривых

Лекальные кривые имеют большое применение в технике. Рассмотрим наиболее часто встречающиеся способы построения плоских кривых. Эти кривые обычно обводят с помощью лекал, поэтому они получили название лекальных кривых.

Эллипс

Эллипсом называется плоская замкнутая кривая – геометрическое место точек К, сумма расстояний от которых до заданных точек F1 и F2 равняется длине заданного отрезка АВ, проведенного через точки F1 и F2, так чтобы отрезок АF1, равнялся отрезку F2В (рисунок 5.1). Отрезок АВ называется большой осью эллипса, а точки F1 и F2 – фокусами эллипса. Отрезок СД, проведенный через середину большой оси – точку О – центр эллипса перпендикулярно к ней, называется малой осью эллипса. Биссектриса смежного с ним угла F1K F2 называется касательной эллипса. Нормаль перпендикулярна касательной.

Рисунок 5.1

Построение эллипса по двум заданным его осям АВ и СД. Из центра О (рисунок 5.2) эллипса проводят две окружности, диаметры которых равны большой и малой осям элипса. Из центра эллипса проводят пучок лучей до пересечения с окружностями в точках 1, 2, 3, 4… и 11, 21, 31, 41… . Из точек 1, 2, 3, 4… проводят прямые, параллельные малой оси эллипса, а из точек 11, 21, 31, 41… - параллельные большой оси. Пересечение соответствующих пар этих прямых определяет ряд точек, соединяя которые плавной кривой получают эллипс.

Для нахождения фокусов F1 и F2 надо из точки С как из центра, провести дугу радиусом R = АО, она пересечет ось АВ в точках Г1 и Г2 – фокусах.

Рисунок 5.2

Гидравлические и пневматические схемы На принципиальной схеме изображают все гидравлические и пневматические элементы или устройства в виде условных графических обозначений и все гидравлические (пневматические) связи между ними. Элементы и устройства показывают в исходном положении. Каждый из них должен иметь буквенно-цифровое позиционное обозначение. Для отличия линий связи различного назначения рекомендуется обозначать их цифрами в разрыве или применять линии разного начертания. В этих случаях на поле схемы должна быть приведена расшифровка значений этих линий. Линиям связи допускается присваивать порядковые номера (по направлению потока рабочей среды), которые проставляют около начала и конца линии.

Рассмотрим на примерах случаи сопряжений при заданном радиусе и при заданной точке сопряжения

Рассмотрим несколько характерных случаев сопряжения двух прямых, прямой и дуги, и двух дуг, когда задана точка сопряжения А.

Точка А задана на прямой. Из заданной точки А опустить перпендикуляр на прямую и откладываем на нем расстояние равное R1

Наиболее часто встречаются резервуары, контурное очертание днища которого имеет форму эллипса (цистерны и т. д.)

 В качестве вспомогательной плоскости чаще всего используют проецирующие плоскости.

  Рассмотрим пример решения задачи на комплексном чертеже (рис.5.7).

Рис.5.7

 Заключаем прямую n во вспомогательную горизонтально проецирующую плоскость Θ, которую зададим горизонтальным следом Θ1 (горизонтальная проекция плоскости). Причем след Θ1 должен совпадать с горизонтальной проекцией прямой n1. Далее находим прямую пересечения вспомогательной плоскости Θ с заданной плоскостью Σ. Сторона АВ пересекается с плоскостью Θ в точке 1, а сторона АС – в точке 2. Сначала отмечаем горизонтальные проекции точек 11 и 21, а затем с помощью вертикальных линий связи находим фронтальные проекции точек 12 и 22 соответственно на фронтальных проекциях сторон треугольника А2В2 и А2С2. Таким образом, плоскости пересекаются по прямой 12. Теперь можно определить фронтальную проекцию К2 искомой точки. Она будет являться точкой пересечения фронтальных проекций построенной прямой 1222 и заданной прямой n2. Горизонтальная проекция К1 определяется с помощью вертикальной линии связи на горизонтальной проекции прямой n1.

Затем нужно определить видимость прямой n относительно плоскости Σ. Для определения видимости на П2 необходимо воспользоваться фронтально конкурирующими точками 3 и 4 (точка 3 лежит на стороне ВС треугольника, а точка 4 – на прямой n). Видимость прямой на П1 определяем с помощью горизонтально конкурирующих точек 1 и 5 (точка 1 лежит на стороне АВ, а точка 5 – на прямой n).

Решение рассмотренной задачи в краткой алгоритмической записи выглядит следующим образом:

1. Θ (n Ì Θ)

2. 12 = Σ ∩ Θ

3. K = 12 ∩ n .


Способ замены плоскостей проекции